1. A passenger elevator travels from the first floor to the 60th floor, a distance of 210 m , in 35 sec . What is the elevator's speed?

$$
S=\frac{d}{t}=\frac{210 \mathrm{~m}}{35 \sec }=\frac{6 \mathrm{~m}}{\mathrm{~s}}
$$

2. A motorcycle is moving at a constant speed of $40 \mathrm{~km} / \mathrm{hr}$. How long does it take the motorcycle to travel a distance of 10 km ?

$$
\begin{aligned}
& {\underset{\text { R }}{\text { solefor }}}_{d}^{d}(t) s=\frac{d(t)}{t} \Longrightarrow \frac{t s}{(s)}=\frac{d}{(s)} \\
& \text { so } \Rightarrow t=\frac{d}{s}=\frac{10 \mathrm{~km}}{40 \mathrm{ltan} / \mathrm{hr}}=0.25 \mathrm{hr} \\
& (\text { or } 15 \mathrm{~min})
\end{aligned}
$$

3. How far does a car travel in 0.75 hr , if it is moving at a constant speed of $88 \mathrm{~km} / \mathrm{hr}$?

$$
\begin{aligned}
& s=\frac{d(s o l v e}{t} \text { for } \Longrightarrow \quad(t) s=\frac{d}{t}\left(t^{t}\right) \\
& s o \Longrightarrow t s=d=0.75 \mathrm{hr}\left(88 \frac{\mathrm{tan}}{\mathrm{hrf}}\right)=66 \mathrm{~km}
\end{aligned}
$$

4. A long-distance runner is running at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. How long does it take the runner to travel 1 km ?
from \#2 above $\Rightarrow t=\frac{d}{\mathrm{~s}}=\frac{1 \text { (2m) }}{5 \frac{(u)}{\mathrm{s}}} \begin{array}{r}\text { these units need to } \\ \text { be the sance }\end{array}$
lenour: 1 km $=1000 \mathrm{~m}$

$$
\text { so } \Longrightarrow \frac{1000 \mathrm{HK}}{\frac{\mathrm{hkC}}{5}}=200 \mathrm{sec}
$$

